An Intensive Energy Conservation Experiment Comparing the PocketLab Teacher Geek® Cart with a ZéCar Flywheel Powered Car

Submitted by Rich on Thu, 11/09/2017 - 19:21

In addition to being a fascinating toy, the ZéCar flywheel powered car can be utilized in physics curricula to study conservation of energy.  It is available from a variety of sources, including teachersource.com for under $14.  In this lesson students study energy conservation, including gravitational potential energy, translational kinetic energy, rotational kinetic energy, and work done against non-conservative frictional forces, with emphasis on comparing ZéCar with the PocketLab Teacher Geek

PocketLab Voyager Quantitative Experiment: Standing Waves on a Suspended Slinky

Submitted by Rich on Thu, 11/02/2017 - 21:00

In addition to being a fun toy, the “Slinky” is commonly used in physics classes to qualitatively investigate a variety of wave properties: longitudinal versus transverse traveling waves, superposition of waves, wave reflection from a solid barrier or a free end, and standing waves and resonance.  Many of these investigations work well when the Slinky is stretched out on the surface of a floor.  However, to do a quantitative study of standing waves and resonance, suspending the stretched Slinky from the ceiling offers the advantages of less fricti

PocketLab Voyager: A Flywheel Experiment

Submitted by Rich on Thu, 10/26/2017 - 22:55

With the current growth in interest in flywheels, stemming from concern for the environmental impact of fossil fuel use, flywheels provide a convenient way for storing energy.  Because of this, the study of flywheels in the physics curriculum is well worth consideration by teachers.  Such a study allows for a careful examination of the principles of conservation of energy, as well as both linear and rotational kinematics.  PocketLab Voyager’s ability to collect angular velocity data makes data collection much easier than was required in similar past experiments wit

VelocityLab/Voyager: Using VelocityLab with LEGO® Carts

Submitted by Rich on Sat, 10/21/2017 - 02:43

Carts constructed with the LEGO® Simple & Powered Machines Set are great for studying motion kinematics, as the resultant motion is fairly smooth, resulting in less noisy data.  While you can use the range finder and PocketLab app, it has been found by the author that using Voyager and the VelocityLab app is less noisy as well.  The problem that one immediately confronts when considering this approach, however, is that both the small wheels and the large wheels in the LEGO® set are too small for attaching Voyager.

VelocityLab/Voyager: An Experiment in Energy and Momentum Conservation

Submitted by Rich on Thu, 10/19/2017 - 18:13

A pendulum is held vertically and is  then released, impacting a cart that is initially at rest.  This experiment provides students with a lesson for comparing theory with actual experimental results and explaining any differences.  A variety of physics principles, including conservation of energy, conservation of momentum, and impulse, are incorporated into the experiment.  VelocityLab is used to determine the actual speed of the cart after the impact, and the students compare this to speed predictions based upon theory.  In addition, students use impulse concepts to calc

Keep the Fridge Door Closed--And we have the data to prove it!

Submitted by DaveBakker on Mon, 10/16/2017 - 18:12

keep calm and close the fridge door

We've all hear this a million times from our parents (or said it a million times to our kids). Is it really that big of a deal?

It turns out that the data is pretty interesting, and it's pretty clear that even opening the door about once per hour wreaks havoc with the internal temperature and humidity.

PocketLab Voyager/LEGO®: A Study of the Atwood Machine

Submitted by Rich on Mon, 10/09/2017 - 17:57

Students study the Atwood machine to verify Newton’s Second Law of Motion.  In this machine, two hanging masses are tied to the end of a string that loops around a pulley.  The larger mass then moves downward with a constant acceleration, while the smaller mass accelerates upward.  The magnitude of this acceleration is a quantity of great interest as it relates to the values of the two masses.  In this lesson, an Atwood machine is constructed using parts from LEGO®’s Simple & Powered Machines Set<